AM/N720 CMC

AM/N720 ceramic matrix composite is comprised of Nextel ${ }^{\mathrm{TM}}$ N720 fiber in an Alumina/Mullite matrix. This datasheet provides nominal properties for a typical layered-fabric composite architecture with $0 / 90$ fiber reinforcement.

PHYSICAL PROPERTIES	
Fiber/Fabric	3000D 8HS Nextel TM N720
Matrix	Alumina/Mullite
Filler	Alumina/silicate
Typical Ply Thickness, mils	16.5
Fiber Volume Fraction, \%	43
Bulk Density, g/cc (pci)	$2.69(0.10)$
Open Porosity, \%	~ 24
Max Use Temperature (Continuous/Short-Term)	$1200^{\circ} \mathrm{C} / 1400^{\circ} \mathrm{C}$

MECHANICAL PROPERTIES	
Tensile Strength, $k s i$	21.0
Tensile Modulus, Msi	9.8
Tensile Strain-at-Failure, \%	0.24
Interlaminar Tensile Strength, $k s i$	0.47
Flexure Strength, $k s i$	7.2
Flexure Modulus, msi	4.2
Compressive Strength, in-plane, $k s i$	19.7
Compressive Modulus, in-plane., Msi	10.2
losipescu Shear Strength, in-plane, $k s i$	2.4
losipescu Shear Modulus, in-plane, Msi	1.8
Shear Strength, Interlaminar (SBS), $k s i$	1.3

In-Plane Tensile Stress-Strain Behavior

COI Ceramics, Inc., offers a variety of advanced ceramic products that are engineered to meet the demanding requirements of high-temperature applications. See the COI Ceramics website for a complete review of the materials solutions available for your applications. www.coiceramics.com

COI Ceramics, Inc.

AM/N720 CMC

THERMAL PROPERTIES

Temperature	$\mathbf{9 3 C}^{\left(200^{\circ} \mathrm{F}\right)}$	$\mathbf{6 0 0}^{\circ} \mathbf{C}\left(1292^{\circ} \mathrm{F}\right)$	$\mathbf{1 2 0 0}^{\circ} \mathbf{C}\left(2192^{\circ} \mathrm{F}\right)$
${ }^{*}$ Specific Heat, cal/g. ${ }^{\circ} \mathbf{C}$	0.21	0.29	0.35
${ }^{*}$ Thermal Diffusivity, in-plane, $\mathbf{c m}^{2} / \mathbf{s}$	0.0119	0.0065	0.0060
${ }^{*}$ Thermal Conductivity, in-plane, $\mathbf{W} / \mathbf{m K}$	2.74	2.25	2.29
Coeff. of Thermal Expansion, in-plane, ppm $/{ }^{\circ} \mathrm{C}$	-	6.03	6.95
Coeff. of Thermal Expansion, transverse, ppm/ ${ }^{\circ} \mathrm{C}$	-	5.96	6.74

